Physikalische Chemie III für Lehramt Übungsblatt 8

(23.06.2023)

Besprechung 29.06.2023

The following questions are from the book Modern Physics by Kenneth S. Krane.

1 Pauli exclusion principle

Simply stated, the Pauli exclusion principle is as follows:

No two electrons in a single atom can have the same set of quantum numbers (n, l, m_{l}, m_{s}).

Using this principle, answer the following questions.
a. A certain atom has six electrons in the $3 d$ level.

- What is the maximum possible total m_{l} for the six electrons, and what is the total m_{s} in that configuration?
- What is the maximum possible total m_{s} for the six electrons, and what would be the largest possible total m_{l} in that configuration?
b. Copper has the electronic configuration $[\mathrm{Ar}] 4 s^{1} 3 d^{10}$ in its ground state. By adding a small amount of energy (about 1 eV) to a copper atom, it is possible to move one of the $3 d$ electrons to the $4 s$ level and change the configuration to $[\mathrm{Ar}] 4 s^{2} 3 d^{9}$. By adding still more energy (about 5 eV), one of the $3 d$ electrons can be moved to the $4 p$ level so that the configuration becomes $[\operatorname{Ar}] 4 s^{1} 3 d^{9} 4 p^{1}$.
- For each of these configurations, determine the maximum value of the total m_{s} of the electrons.

2 Addition of angular momenta

Suppose that we have an atom with two electrons outside of filled subshells. These electrons have quantum numbers $\left(n_{1}, l_{1}, m_{l 1}, m_{s 1}\right)$ and $\left(n_{2}, l_{2}, m_{l 2}, m_{s 2}\right)$. The total orbital angular momentum of the atom is determined by the vector sum of the orbital angular momenta of the two electrons: $\vec{L}=\vec{l}_{1}+\vec{l}_{2}$. These vectors do not add like ordinary vectors, but have special addition rules associated with quantized angular momentum. These rules enable us to find L and its associated magnetic quantum number M_{L}.

1. The maximum value of the total orbital angular momentum quantum number is

$$
L_{\max }=l_{1}+l_{2} .
$$

2. The minimum value of the total orbital angular momentum quantum number is

$$
L_{\min }=\left|l_{1}-l_{2}\right|
$$

3. The permitted values of L range from $L_{\min }$ to $L_{\max }$ in integer steps:

$$
L=L_{\min }, L_{\min }+1, L_{\min }+2, \ldots, L_{\max } .
$$

4. The z component of the total angular momentum vector is found from the sum of the z components of the individual vectors. Hence, in terms of the magnetic quantum numbers:

$$
M_{L}=m_{l 1}+m_{l 2} .
$$

The permitted values of the total magnetic quantum number M_{L} range from $-L$ to $+L$ in integer steps:

$$
M_{L}=-L,-L+1, \ldots,-1,0,1, \ldots, L-1, L
$$

An identical set of rules holds for coupling the spin angular momentum vectors to give the total spin angular momentum. For two electrons, each of which has $s=1 / 2$, the total spin quantum number S can be 0 or 1 .

All filled subshells have $L=0$ and $S=0$, so we don't need to consider filled subshells in analyzing the angular momentum of an atom.

- Find the possible values of the total orbital and spin quantum numbers for carbon.

3 Hund's rules

The two $2 p$ electrons of carbon can combine to give $L=0,1$, or 2 and $S=0$ or 1 . The ground state of carbon will be identified by only one particular choice of L and S. How do we know which of these combinations will be the ground state? The rules for finding the ground state quantum numbers are known as Hund's rules:

1. First find the maximum value of the total spin magnetic quantum number M_{S} consistent with the Pauli principle. Then

$$
S=M_{S, \max }
$$

2. Next, for that M_{S}, find the maximum value of M_{L} consistent with the Pauli principle. Then

$$
L=M_{L, \max }
$$

- Use Hund's rules to find the ground-state quantum numbers of carbon.

