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The following questions are from the book Modern Physics by Kenneth S. Krane.

1 Line spectra

In 1885, Johann Balmer, a Swiss mathematics teacher, noticed (mostly by trial and error) that the wavelengths

of the group of emission lines of hydrogen in the visible region could be calculated very accurately from the

formula

λ = (364.5 nm)
n2

n2 − 4
(n = 3, 4, 5, . . . ). (1)

For example, for n = 3, the formula gives λ = 656.1 nm, which corresponds exactly to the longest wavelength

of the series of hydrogen lines in the visible region. This formula is now known as the Balmer formula and the

series of lines that it fits is called the Balmer series. The wavelength 364.5 nm, corresponding to n → ∞, is

called the series limit.

It was soon discovered that all of the groupings of lines in the hydrogen spectrum could be fit with a similar

formula of the form

λ = λlimit
n2

n2 − n20
(n = n0 + 1, n0 + 2, n0 + 3, . . . ), (2)

where λlimit is the wavelength of the appropriate series limit. For the Balmer series, n0 = 2. The other series

are today known as Lyman (n0 = 1), Paschen (n0 = 3), Brackett (n0 = 4), and Pfund (n0 = 5).

Another interesting property of the hydrogen wavelengths is summarized in the Ritz combination principle.

If we convert the hydrogen emission wavelengths to frequencies, we find the curious property that certain pairs

of frequencies added together give other frequencies that appear in the spectrum.

a. The series limit of the Paschen series (n0 = 3) is 820.1 nm. What are the three longest wavelengths of the

Paschen series?

b. Show that the longest wavelength of the Balmer series and the longest two wavelengths of the Lyman series

satisfy the Ritz combination principle. For the Lyman series, λlimit = 91.13 nm.
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2 One-dimensional hydrogen atom

To analyze the hydrogen atom according to quantum mechanics, one must solve the Schrdinger equation for

the Coulomb potential energy of the proton and the electron:

U(r) = − 1

4πε0

e2

r
. (3)

Here ε0 is the dielectric permittivity of the vacuum, and r is the distance between the proton and the electron.

In class you discussed the solutions to the three-dimensional problem for the hydrogen atom using spherical

polar coordinates. In this question you will examine the simpler one-dimensional problem, in which a proton is

fixed at the origin (x = 0) and an electron moves along the positive x axis. (This doesn’t represent a real atom,

but it does show how some properties of electron wave functions in atoms emerge from solving the Schrödinger

equation.)

In one dimension, the Schrödinger equation for an electron with potential energy

U(x) = − 1

4πε0

e2

x
(4)

would be

− ~2

2m

d2ψn(x)

dx2
− 1

4πε0

e2

x
ψn(x) = Enψn(x), (5)

where the subscript n enumerates the different wave functions ψn and their corresponding energies En.

a. Show that the wave function

ψ1(x) = Axe−αx, (6)

where A is the normalization constant, is one possible solution of the Schrödinger equation (5) if the constant

α and the energy E1 are selected appropriately.

Obtain an expression for α in terms of the fundamental constants appearing in the Schrödinger equation.

Express the energy E1 in terms of this α and the other fundamental constants.

b. The Bohr radius a0 is defined as

a0 = 4πε0
~2

mee2
, (7)

where me is the electron mass and e is the elementary charge.

How is α that you obtained in part a related to the Bohr radius?

c. Using the numerical values

ε0 = 8.854 F/m (Farads per meter)

me = 9.109× 10−31 kg

e = 1.602× 10−19 C

(8)

calculate the numerical value of the Bohr radius a0 in units of nanometers.
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d. Calculate the numerical value of the energy E1 that you obtained in part a. Express this value in units of

eV (electron-volt).
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