Physikalische Chemie III für Lehramt
 Übungsblatt 3

(05.05.2023)

Besprechung 11.05.2023

The Google Colab notebook that we created in our last meeting is here:

```
https://colab.research.google.com/drive/1Fm56SVv1-cLJ_Qe67IQbLfIXji02_C_l?usp=sharing
```

Complete your work on the second question from Ubungsblatt 2.

1 Effective bond length from the 1D box problem

The following expression for the frequency of the photon needed to excite a HOMO \rightarrow LUMO transition in the 1D box problem was obtained in the lecture:

$$
\begin{equation*}
\nu_{\mathrm{em}}=\frac{h}{8 m_{e}} \frac{N+1}{L^{2}} . \tag{1}
\end{equation*}
$$

Here h is the Planck constant, m_{e} is the mass of the electron, N is the number of π electrons in the molecule, and L is the length of the molecule along which the π electrons are allowed to move freely.

Let d_{0} be the effective length of one $\mathrm{C}-\mathrm{C}$ bond in the conjugated system, such that

$$
\begin{equation*}
L=N d_{0} \tag{2}
\end{equation*}
$$

Substituting in (1), the excitation frequency can be written in terms of d_{0} as follows:

$$
\begin{equation*}
\nu_{\mathrm{em}}=\frac{h}{8 m_{e}} \frac{N+1}{N^{2}} \frac{1}{d_{0}^{2}} . \tag{3}
\end{equation*}
$$

The wavelength of this electromagnetic excitation is then

$$
\begin{equation*}
\lambda_{\mathrm{em}}=\frac{c}{\nu_{\mathrm{em}}}=\frac{8 m_{e} c}{h} d_{0}^{2} \frac{N^{2}}{N+1} . \tag{4}
\end{equation*}
$$

In this question you will determine the d_{0} which agrees best with the experimental values given in the lecture, and reproduced in Table 1. In terms of the variable x which is defined in the last column of the table, the above expression for the wavelength becomes

$$
\begin{equation*}
\lambda_{\mathrm{em}}=\left(\frac{8 m_{e} c}{h} d_{0}^{2}\right) x . \tag{5}
\end{equation*}
$$

(a) Make a plot with the values of x along the horizontal axis and the corresponding wavelengths along the

Table 1: Experimental absorption wavelengths of organic dyes with different numbers of π electrons.

N	$\lambda_{\text {em }}[\mathrm{nm}]$	$x=\frac{N^{2}}{N+1}$
6	332	5.14
8	459	7.11
10	587	9.09
12	716	11.08
14	844	13.07
16	973	15.06

vertical axis. On top of these experimental points, plot the line

$$
\begin{equation*}
\lambda=a x \tag{6}
\end{equation*}
$$

and manually change the slope a until the line approximates all experimental points.
(b) Once you obtain the numerical value of the slope a that best matches the experimental data, calculate the value of the effective bond length from

$$
\begin{equation*}
d_{0}=\sqrt{a \frac{h}{8 m_{e} c}} \tag{7}
\end{equation*}
$$

Pay attention to the units! Compare your result with the known lengths of single and double $\mathrm{C}-\mathrm{C}$ bonds.

