

Dynamics and structure in the Mn²⁺ site of concanavalin A as determined by high-field EPR and ENDOR spectroscopy

Goldfarb, D., Narasimhulu, K. V. and Carmieli, R. (2005), Magn. Reson. Chem., 43: S40–S50

Deniz Ar Seminar Moderne Anwendungen der Magnetischen Resonanz 21/10/13

- Untersuchte Probe bei EPR/ENDOR meistens als gefrorene Lösung
- \rightarrow Orientierungsselektive Messungen nicht möglich
- Einzelkristall Messungen liefern meist vollständige und genaue Daten
- ABER: Protein Einzelkristall sehr klein \rightarrow EPR/ENDOR schwierig
- Die hohe Empfindlichkeit der Hochfeld EPR gegenüber Größenlimitierte Proben machen Single Kristall Messungen von Metalloenzymen machbar

1. Einleitung

©Dissertation Silvia Scheidt, 2006 Uni Mainz

Einleitung

m

- ENDOR: Erweiterung von EPR zur Untersuchung komplizierter Moleküle
- EPR zur Untersuchung paramagnetischer Verbindungen

$$N_{n} = 2(2S+1)\sum_{k=1}^{m} I_{k}$$
$$N_{e} = \prod_{k=1}^{m} (2I_{k}+1)$$

Auswahlregeln EPR $\Delta M_s = \pm 1 \& \Delta M_l = 0$

Auswahlregeln ENDOR $\Delta M_s = 0 \& \Delta M_l = \pm 1$

© H. Kurreck, B. Kirste, W. Lubitz, Angewandte Chemie, 96, 1984, 171-193.

Einleitung

- EPR zur Untersuchung paramagnetischer Verbindungen
- ENDOR: Erweiterung von EPR zur Untersuchung komplizierter Moleküle

© H. Kurreck, B. Kirste, W. Lubitz, Angewandte Chemie, 96, 1984, 171-193.

Concanavalin A

Gehört zur Pflanzenfamilie Haemegglutinin (eine große Gruppe von Saccharidbindenden Proteine)

3 D Struktur X-Ray mit einer Auflösung 0,94 Å

Struktur des Protein Dimers: β-Faltblatt Strang → jellyroll motif Assoziert als Dimer von Dimer → Tetramer

Jedes Monomer 25 kDa :

-aus 237 AS und 2 Metallbindende Seiten Ca²⁺ (S2) / Mn²⁺ (S1)

Kurzer Inhalt des Papers

Untersuchung der Eigenschaften von Mn²⁺ in Concanavalin A durch single crystal W-band EPR/ENDOR

- Meirovitch: single crystal Q-band Spektren bei RT: gleiche Ergebnisse wie bei durch X-Ray bestimmte Struktur
- →ein Tetramer in der asym. Einheit mit einem Mn²⁺ Typ pro Monomer
 W-Band Messungen bei RT mit Q-Band übereinstimmend
- Analyse des CW-EPR Rotationsmuster bei RT bestätigt den ZFS Tensor von Meirovitch

Vergleich: Rotationsmuster W-Band CW EPR (ac Ebene) bei a) RT und b) 4,5 K

Keine Übereinstimmung mit den Ergebnissen der X-Ray Messungen bei 110 K

EPR Messungen

Unterschiedliche Werte für D und E

Mn sites	$D(\pm 10)^a$ MHz	$\frac{E}{D}(\pm 0.005)$	$\alpha \pm 5$ (degrees)	$\beta \pm 3$ (degrees)	$\gamma \pm 5$ (degrees)
Mn ²⁺ (RT)	726	0.115	34	127	41
$Mn_A^{2+}(4.5 \text{ K})$	789	0.24	59	118	44
$Mn_B^{2+}(4.5 \text{ K})$	970	0.145	2	135	52

2 mögliche Modelle erklären die EPR Ergebnisse

- i) 2 verschiedene Tetramere mit jeweils nur einem Typ Mn²⁺
- ii) jedes Tetramer besitzt eine zufällige Verteilung von beiden Mn²⁺ Typen

Für den Temperatureffekt : Messung der EPR Spektren in Abh. der Temperatur (B₀ II *a*)

EPR Messungen

Bis 205 K keine Veränderungen, nur 2 Lorentz Linien

>205 K der Abstand zwischen den Linien wird größer

Bei RT nur noch eine Lorentz Linie

Diese Veränderung der Linie typisch für Zwei-Seiten-Austausch

$$\operatorname{Mn}_{A}^{2+} \xrightarrow[\tau_{a}^{-1}]{\tau_{a}^{-1}} \operatorname{Mn}_{B}^{2+} \\
 \xrightarrow[\tau_{b}^{-1}]{\tau_{a}^{-1}} = k.$$

$$\underbrace{\frac{1}{\tau}}_{\tau} = \frac{1}{\tau_{a}} + \frac{1}{\tau_{b}} = k.$$

EPR Messungen

Arrhenius Plot $E_a=23,8 \text{ kJmol}^{-1} \Delta S_e=3,2 \text{ kJmol}^{-1}$

Mit Anstieg der T steigt auch k

EPR zeigt auch, dass |a_{iso}|=265 MHz

Für beide Mn_A^{2+} und Mn_B^{2+} gleich

- H₂O und Imidazol Protonen am nächsten zum Mn²⁺ → dominieren das ¹H ENDOR Spektrum
- Unterscheidung der H_{Im} und H_W durch Vergleich der Spektren in H₂O und D₂O (in D₂O keine H₂O Signale)
- ¹H ENDOR Spektren bei Feldpositionen a und b zeigen keine Unterschiede

→d.h. keine strukturelle Unterschiede zwischen den Protonen bzgl. der zwei Mn²⁺ Typen

 ¹H ENDOR Spektren bei Feldpositionen a und b zeigen keine Unterschiede

> →d.h. keine strukturelle Unterschiede zwischen den Protonen bzgl. der zwei Mn²⁺ Typen

Imidazol
protone $\rm H_{im1}$ und $\rm H_{im2}$ für Die Seiten I und II

$$v_{M_S}(H) = M_S[T_{\perp}(3\cos^2\theta - 1) + a_{iso}] - v_I$$

Punkt-Dipol Näherung $T_{\perp} = \frac{\mu_0}{4\pi h} \frac{(gg_N \beta \beta_N)}{r^3},$

Proton	$T_{\perp}(\pm 0.04)$ MHz	$a_{\rm iso}(\pm 0.04){\rm MHz}$	$\beta \pm 0.5$ (degrees)	$\gamma \pm 0.5$ (degrees)	$r_{Mn-H}\pm 0.02~\text{\AA}$
H _{im1}	1.94	0.08	83	-70.3	3.44
H _{im2}	1.99	0.08	89.5	5.3	3.41
H_{w1}	3.49	0.8	78.3	143.0	2.82
H_{w2}	3.96	0.1	112.9	134.0	2.71
H_{w3}	2.5	0.4	47.0	50.0	3.16
H_{w4}	3.9	0.4	67.0	72.0	2.72

⁵⁵Mn ENDOR

⁵⁵Mn Hyperfein WW

- Bestimmt durch EPR Mesungen
- gegenüber Mn_A²⁺ und Mn_B²⁺ nicht empfindlich
- Prisner et. al: Untersuchung von Mn(II) Typen in MnAlPOn durch Analyse von Hyperfein WW (W-Band ENDOR)

Kern Quadrupol WW

 Disselhorst et al. durch pulsed ENDOR bei 275 GHz Messungen von Einzelkristallen mit 0,2% Mn²⁺ in ZnGeP₂ durchgeführt: Quadrupol WW aufgelöst

⁵⁵Mn ENDOR

⁵⁵Mn ENDOR

B₀||a

Mn_{A}^{2+} P(*a*)=0,57 MHz Mn_{B}^{2+} P(*a*)=0,26 MHz

- Temperaturabhängige EPR Messungen zeigen Austauschprozesse zwischen zwei nicht äquivalente Mn²⁺ Seiten: Mn_A²⁺ und Mn_B²⁺
- ¹H-ENDOR: H₂O und Imidazol an diesem dynamischem Prozess nicht beteiligt

 ⁵⁵Mn ENDOR: unterschiedliche Qudrupol WW Werte f
ür Mn_A²⁺ und Mn_B²⁺

- Dissertation Silvia Scheidt, 2006 Uni Mainz
- H. Kurreck, B. Kirste, W. Lubitz, *Angewandte Chemie*, 96, **1984**, 171-193.
- Meirovitch E, Luz Z, Kalb AJ, J. Am. Chem. Soc. **1974**, 96, 7538.
- Goldfarb, D., Narasimhulu, K. V. and Carmieli, R. (2005), Magn. Reson. Chem., 43: S40–S50

Vielen Dank für Ihre Aufmerksamkeit.....

Demetallisiertes conc A in einer 1mM Lösung von MnCl2 und 1mM CaCl2 durch eine Dialyse gegen 0,1 M NaNO3 mir 0,05 M Tris Acetat (pH 6,5)

$$\nu_{M_S}(H) = M_S[T_{\perp}(3\cos^2\theta - 1) + a_{iso}] - \nu_I$$

$$T_{\perp} = \frac{\mu_0}{4\pi h} \frac{(gg_N \beta \beta_N)}{r^3},$$

$$\nu_{M_S}(Mn) = M_S a_{iso} - \nu_I + P(2m_I - 1) + \frac{a_{iso}^2}{\nu_0} [-S(S+1) + (M_S)^2 - M_S(2m_I - 1)]$$

$$\Delta \nu_{\pm \frac{1}{2}} = 2\nu_I - 2P(2m_I - 1) + \frac{17}{2} \frac{a_{\rm iso}^2}{\nu_0}$$

$$\overline{\nu}_{\pm \frac{1}{2}} = a_{\rm iso} - \frac{a_{\rm iso}^2}{\nu_0} (2m_I - 1)$$

$$P = \frac{3e^2qQ}{8I(2I-1)h} [(3\cos^2\theta' - 1) + \eta \sin^2\theta' \cos(2\phi')]$$
$$\eta = \frac{P_{xx} - P_{yy}}{P_{zz}}$$

Änderung der Besetzungszahlen

© Priv.-Doz. Dr. Burkhard Kirste Institut für Chemie und Biochemie, FU Berlin

Davies ENDOR Pulssequenz

